
Collision Resolution in Hash Tables for
Vocabulary Accumulation During Parallel

Indexing
Matt Crane & Andrew Trotman

Introduction

Vocabulary accumulation

Use some data structure

Term frequency skewed

Both collection and document

Parallel indexing

Some Data Structure?
Lots to choose from

Hash tables generally agreed to be fastest

Collision resolution in hash tables

Chaining uses a secondary structure to do so

Some data structure for chaining

Parallel Indexing
Indexing documents in embarrassingly parallel

So index them separately

Combine per document indexes together

Single threaded merging (assign docids etc.)

Analogous to Map/Reduce

Collections
Documents Unique Terms Total Terms

Wall Street
Journal 173K 230K 83M

.GOV 1.2M 5.4M 1.1B

.GOV2 25M 37M 20B

ClueWeb09 Cat. B 50M 96M 55B

Parallel Indexing Speedup in ATIRE
When document indexer discovers new term (for that doc):

Search the global vocabulary, storing reference if found

When merging:

If already have a reference, update term details

Otherwise, upsert the term

Some Collision Resolution
Structure?

Multi reader, single writer

For the chained structures tested, achievable with
atomic compare-and-swap operations

Global vocabulary is consulted for each document
occurrence rather than total occurrence

Structures Tested

Linked Lists (insert-at-back heuristic)

Binary Search Trees

Periodic Self-Balancing BSTs

Document-Frequency Treaps

28 216 224

Structure Performance a Function
of Density

Increase density by reducing number
of hash slots available

Results shown for Wall Street
Journal:

Expected degradation for lists

Treaps always slower

PSBBSTs not shown

Periodic Self Balancing BSTs
BSTs are dependant on order of data inserted

Degrade to lists (at least two docs in CW12)

So balancing the trees

Previous work shows splaying periodically to be better
than always doing so

Balance when new term inserted at depth d

Periodic Self Balancing BSTs

Day-Stout-Warren algorithm

Degrade the tree to a list by right rotation

Perform left rotations to restore complete BST

Happens in place and in linear time

0

20

40

60

80

5 10 15 20 25 30 35 40 45 50

Rebalance Depth (d)

Ti
m

e
to

In
de

x
(s

)

Periodic Self Balancing BSTs

0

100,000

200,000

300,000

5 10 15 20 25 30 35 40 45 50

Rebalance Depth (d)

R
eb

al
an

ce
s

Pe
rf

or
m

ed

CW09B .GOV2

.GOV WSJ

57.5

60.0

62.5

65.0

22.5

23.0

23.5

24.0

24.5

25.0

1.30

1.35

1.40

1.45

1.50

1.55

0.125

0.130

0.135

0.140

0.145

0.150

Binary
Search

Tree

Document
Frequency

Treap

Linked
List

Binary
Search

Tree

Document
Frequency

Treap

Linked
List

Collision Resolution

Ti
m

e
to

In
de

x
(m

in
)

Results

PSBBSTs too parameter sensitive

BST & Linked List equally good

Low density (Hash slots: 224)

Treap consistently worse

Document Frequency Treaps

Treaps have, and maintain, two properties

Sorted ordering — same as BSTs

Heap property — in this case, document frequency

Larger document frequencies are closer to root

Document Frequency Treaps
If more frequent terms are closer to root, why always
slower?

One test for maintenance is cheap, but a lot are done

At least one comparison per document occurrence per
term

Can cause missed lookups while rotations are performed

Conclusions
Single writer, multi reader structures

Lookup feature saves substantial time

Some structures are very sensitive to parameters

Nicer theoretical structures can have higher
computation costs

Future Work

Smarter self-balancing trigger

Periodic treapificiation

Questions?
// Comments

