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Sowe Data Structure?

* Lots o choose from
* Hash tables generally agreed to be fastest
* (ollision resolution in hash tables
* (Chaining uses a secondary structure to do so

* Sowe data structure for chaining



Parallel Indexing

* |ndexing documents in embarrassingly parallel
* S0 index them separately

* Combine per document indexes together
* Single threaded merging (assign docids ete.)

* Analogous to Map/Reduce
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Parallel Indexing Speedup in ATIRE

* When document indexer discovers new terw (for that doc):
* Search the global vocabulary, storing reference if found
* When wmerging:
* |f already have a reference, update term details

* (therwise, upsert the term



Sowe Collision Resolution
Strueture?

* Moultireader, single writer

* For the chained structures tested, achievable with
atowmic compare-and-swap operations

* Global vocabulary is consulted for each document
occurrence rather than total occurrence



Structures Tested

* Linked Lists (insert-at-back hevristic)
* Binary Search Trees
* Periodic Self-Balancing BSTs

* Document-Frequency Treaps



Structure Performance a Function
of Density

* lncrease density by reducing number
of hash slots available

* Results shown for Wall Street
Journal:

* Expected degradation for lists

* Treaps always slower

* PSBBSTs not shown



Periodic Self Balancing BSTs

* BSTs are dependant on order of data inserted

* [egrade to lists (at least two does in CW12)

* So balancing the frees

* Previous work shows splaying periodically to be better
than always doing so

* Balance when new terw inserted at depth d



Periodic Self Balancing BSTs

* [Pay-Stout-Warren algorithm
* [egrade the tree to a list by right rotation
* Perforwm left rotations to restore complete BST

* Happens in place and in linear time



Rebalances Performed
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* PSBBSTs too parameter sensitive

* BST & Linked List equally good
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Document Frequency Treaps

* Treaps have, and maintain, two properties
* Sorted ordering — same as BSTs
* Heap property — in this case, document frequency

* Larger document frequencies are closer to root



Document Frequency Treaps

* |f more frequent terms are closer to roof, why always
slower?

* One test for maintenance is cheap, but a lot are done

* At least one comparison per document occurrence per
term

* Can cause missed lookups while rotations are performed



Conclusions

* Single writer, multi reader structures
* Lookup feature saves substantial time
* Sowe structures are very sensitive to parameters

* Nicer theoretical structures can have higher
computation costs



Future Work

* Swarter self-balancing trigger

* Periodic freapificiation
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// Comments




