Collision Resolution in Hash Tables for
Vocabulary Accumulation During Parallel
Indexing

Matt Crane & Andrew Trotman




Infroduction

* Vocabulary accuwmvulation

10,000,000 —

1,000,000 -

* Use some data structure

10,000 —

Frequency

1,000 —

* Term frequency skewed

100 -

* Both collection and document

I I
100 1,000 10,000 100,000

Rank Position

* Parallel indexing



Sowe Data Structure?

* Lots o choose from
* Hash tables generally agreed to be fastest
* (ollision resolution in hash tables
* (Chaining uses a secondary structure to do so

* Sowe data structure for chaining



Parallel Indexing

* |ndexing documents in embarrassingly parallel
* S0 index them separately

* Combine per document indexes together
* Single threaded merging (assign docids ete.)

* Analogous to Map/Reduce



Wall Street
Journal

GOV

GOV2

ClueWeb09 Cat. B

Documents

173K

Collections

Unique Terms

230K

Total Terwms

83M

1.2ZM 94M L1
25M 37M 209
50M 96M 99%




Parallel Indexing Speedup in ATIRE

* When document indexer discovers new terw (for that doc):
* Search the global vocabulary, storing reference if found
* When wmerging:
* |f already have a reference, update term details

* (therwise, upsert the term



Sowe Collision Resolution
Strueture?

* Moultireader, single writer

* For the chained structures tested, achievable with
atowmic compare-and-swap operations

* Global vocabulary is consulted for each document
occurrence rather than total occurrence



Structures Tested

* Linked Lists (insert-at-back hevristic)
* Binary Search Trees
* Periodic Self-Balancing BSTs

* Document-Frequency Treaps



Structure Performance a Function
of Density

* lncrease density by reducing number
of hash slots available

* Results shown for Wall Street
Journal:

* Expected degradation for lists

* Treaps always slower

* PSBBSTs not shown



Periodic Self Balancing BSTs

* BSTs are dependant on order of data inserted

* [egrade to lists (at least two does in CW12)

* So balancing the frees

* Previous work shows splaying periodically to be better
than always doing so

* Balance when new terw inserted at depth d



Periodic Self Balancing BSTs

* [Pay-Stout-Warren algorithm
* [egrade the tree to a list by right rotation
* Perforwm left rotations to restore complete BST

* Happens in place and in linear time



Rebalances Performed

Periodic Self Balancing BSTs

300,000 -

N
-
I

200,000 -

100,000 -

Time to Index (s)
5
I

N
-,
I

Rebalance Depth (d) Rebalance Depth (d)



* PSBBSTs too parameter sensitive

* BST & Linked List equally good

0.150 -

Time to Index (min)

* Low density (Hash slots: 224)

=
U1
S

0.145 -

0.140 -

* Treap consistently worse -

0.130 -

0.125 -

Collision Resolution



Document Frequency Treaps

* Treaps have, and maintain, two properties
* Sorted ordering — same as BSTs
* Heap property — in this case, document frequency

* Larger document frequencies are closer to root



Document Frequency Treaps

* |f more frequent terms are closer to roof, why always
slower?

* One test for maintenance is cheap, but a lot are done

* At least one comparison per document occurrence per
term

* Can cause missed lookups while rotations are performed



Conclusions

* Single writer, multi reader structures
* Lookup feature saves substantial time
* Sowe structures are very sensitive to parameters

* Nicer theoretical structures can have higher
computation costs



Future Work

* Swarter self-balancing trigger

* Periodic freapificiation



Questions?
// Comments




