
Pipes, Hash & Trees
- or -

What I’ve been doing over the last couple of months

Information Retrieval

Retrieve information that is relevant to you from
somewhere you couldn’t exhaustively look

!

Most familiar context: Google

ATIRE

In-house indexer & search engine in active development
by Andrew & members of the IR lab since 2008

Gaining popularity, actively used here and gaining
traction overseas, particularly Australia

100K lines of C++

Indexing

To retrieve potential documents quickly we create an
index of terms to documents

!

Almost exactly the same as an index found in books —
but exhaustive and created automatically

Nitro

4x AMD Opteron 6276 2.3GHz 16-core

512GB memory

6x 600GB 10,000 RPM drives

The Pipeline

The Pipeline

Indexing in ATIRE uses a multi-stage parallel producer/
consumer inspired pipeline

!

That’s a lot of buzzword-y stuff!

The Pipeline

Each section of the pipeline
knows how to do its own thing

Un-gzip, Un-tar etc.

Each section also knows how to
request more data and respond
to requests

The Pipeline

Where/why are we waiting?

Nowhere unexpected

Disk I/O

CPU intensive (un-gz-ing)

The Pipeline

Add buffering

When upstream asks for data, ask for more from
downstream, so that when upstream asks again we can
immediately respond

!

Useful when dealing with disks in particular

The Pipeline

Add double buffering

While upstream is busy working, we can fill the
remainder of our buffer

Saturate the pipeline so nothing waits unnecessarily

The Pipeline

Parallel indexing — pre-index documents separately
and fold into the final index afterwards

Non-parallel indexing — each document is indexed in
turn directly into the final index

Benefits of a Lock-Free Tree

Parallel indexed documents look for their nodes in the
main hash table as they are created

Because it didn't exist, doesn’t mean we can blindly
create — node might have created by another document
in the meantime

The Hash 
Function & Table

The Hash Table

Each term is hashed and inserted into a binary search
tree at the given hash-bucket

What constitutes a good hash function?

General answer: uniform distribution of keys

IR answer: good distribution of keys

The Hash Functions

Pearson’s Fast Hash function:

Random walk of the string

Header Hash I — developed internally

Treat head of string as a base-37 digit

Special case numbers to their value

High bits set to low bits of length to further distribute

The Hash Functions

Header Hash II — developed internally

Special case numbers to their value

Treat head of string as a base-27 digit

Calculated in a different order, so small strings are closer
together

No length component

WIP

The Hash Functions

Header Hash III — developed internally

Treat head of string as a base-27 digit

Frequencies of characters lets us combine buckets,
letting frequent longer terms be not collided with

WIP

The Hash Table II

How big do we make the hash table?

!

Two hash tables — one per document, one overall

Per document hash table size 256 — unlikely to be
many intra-document hash collisions regardless of
function

The Hash Table II

2**8 — obviously (?) not large enough

2**16 — too many collisions

2**24 — large enough to minimise collisions, small
enough to allocate

2**32 — impractical to allocate on all but the biggest
machines, but would allow perfect hashing!

Which Hash Function

Expensive part: string comparisons in the tree at each
bucket

If there are fewer unique terms than buckets, hash
uniformly and every term gets a single strcmp

If there are more unique terms than buckets, cheap
access for frequently occurring terms is a must

We assume the latter

Which Hash Function

Non-parallel indexing:

Every term is inserted/updated into the global hash/
tree per occurrence

This depends on number of unique terms:  
< buckets — even distribution 
> buckets — skewed distribution

Which Hash Function

Parallel indexing:

Each document likely has few unique terms, so even
distribution in per-document hash-table

For merging into global distribution, terms that occur
in lots of documents need to be cheap to access

The Hash Function

Header hash, or variant (WIP)

Works well for the majority of documents

When collisions occur, the input is sufficiently random
that the tree at each bucket is balanced

The Wild Wild Web

Documents on the web are not typical by any definition
of the word

!

Even so, atypical documents are usually not a problem
until…

The Wild Wild Web

… we come across a long list of DNA sequences

… that start with the same 4 characters

… are the same length

… and have been pre-sorted

… and there are multiple documents like this

The Wild Wild Web

BST at that hash-node degrades to a linked-list

Traverse the linked list to insert the next term

!

> 600k items … blows the stack when recursed down

Trees

Balancing Trees

Self-balancing trees (AVL-trees, red/black trees) need
extra data (height/colour/parent) to be stored/calculated

!

Already seen it’s only rare occasions we need to worry
about the balance

So one-off balancing, when required

Balancing Trees

Day-Stout-Warren

Rotate to degrade to a linked-list

Perform series of rotations to generate a perfectly
balanced tree afterwards

!

Linear time, in-place, amortized cost

Balancing Trees

Too frequently and spend  
too much time balancing

Too infrequently and spend  
too much time inserting

Never and we blow the stack
and crash

Balancing Trees

Merge from individual “index” to global is pre-order

Merging balanced trees into the final index creates
balanced trees

Conclusions

Conclusions

Trade-offs and compromises occur all over the place

What helps one problem creates others

eg: random hashing would solve DNA sequence
blowing the stack, but be slower overall

Conclusions

In theory, theoretically better always is

In practice, it isn’t necessarily practical

In general, generality can hinder performance

Conclusions

As far as we are aware, nobody has created a hash
function that purposefully generates an uneven
distribution

Questions & Comments

