
Questionable Answers in Question Answering Research:
Reproducibility and Variability of Published Results

Matt Crane

David R. Cheriton School of Computer Science, University of Waterloo

matt.crane@uwaterloo.ca

Abstract

“Based on theoretical reasoning it has been
suggested that the reliability of findings pub-
lished in the scientific literature decreases with
the popularity of a research field” (Pfeiffer and
Hoffmann, 2009). As we know, deep learning
is very popular and the ability to reproduce re-
sults is an important part of science. There
is growing concern within the deep learning
community about the reproducibility of results
that are presented. In this paper we present
a number of controllable, yet unreported, ef-
fects that can substantially change the effec-
tiveness of a sample model, and thusly the re-
producibility of those results. Through these
environmental effects we show that the com-
monly held belief that distribution of source
code is all that is needed for reproducibility
is not enough. Source code without a repro-
ducible environment does not mean anything
at all. In addition the range of results produced
from these effects can be larger than the ma-
jority of incremental improvement reported.

1 Introduction

The recent “reproducibility crisis” (Baker, 2016) in
various scientific fields (particularly Psychology and
Social Sciences) indicates that some introspection is
needed in all fields, particularly those that are exper-
imental by nature. The efforts of Collberg’s repeata-
bility studies highlight the state of affairs within the
computer systems research community (Moraila et
al., 2014; Collberg et al., 2015).1 Other fields have
also begun to push for more stringent presentation of

1http://reproducibility.cs.arizona.edu

results, for example, the information retrieval com-
munity has been aware for some time of the issues
surrounding weak baselines (Armstrong et al., 2009)
and more recently reproducibility (Arguello et al.,
2016; Lin et al., 2016).

The issue of reproducibility in the deep-learning
community has also started to become a growing
concern, with the need for replicable and repro-
ducible results being included in a list of challenges
for the ACL (Nivre, 2017). In reinforcement learn-
ing, Henderson et al. (2017) showed that there are a
number of effects that would change the results ob-
tained by published authors and call for more rigor-
ous testing, and reporting, of state-of-the-art meth-
ods. There is also an ongoing project by OpenAI to
provide baselines in reinforcement learning that are
reproduced from published descriptions, but even
they admit that their scores are only “roughly on par
with the scores in published papers.”2 Reimers and
Gurevych (2017) investigated over 50,000 combina-
tions of hyper-parameter settings, such as word em-
bedding sources and the optimizer across five dif-
ferent NLP tasks and found that these settings have
a significant impact on both the variability, and the
relative effectiveness of models.

In this paper we present a number of controllable
environment settings that often go unreported, and
illustrate that these are factors that can cause irre-
producibility of results as presented in the litera-
ture. These environmental factors have an effect on
the effectiveness of neural networks due to the non-
convexity of the optimization surface, meaning that

2https://blog.openai.com/openai-
baselines-dqn/

http://reproducibility.cs.arizona.edu
https://blog.openai.com/openai-baselines-dqn/
https://blog.openai.com/openai-baselines-dqn/

even minor changes in computation can lead the net-
work to fall into one of a multitude of local min-
ima. Because these effect sizes are comparable to
the largest incremental improvements that have been
reported brings into question those improvements,
and associated claims of progress.

2 Experimental Setup

In order to limit the scope of this paper, we specif-
ically focus our efforts on a single natural language
processing task—answer selection within question
answering—elaborated upon in Section 2.1. We also
further limit our discussion to look at how these en-
vironmental effects manifest in a single implemen-
tation of a single model, described in Section 2.2.
These restrictions, however, do not mean that our
results are only applicable to this model on this task,
rather our discussion generalizes to all neural net-
work based research.

To isolate the effect that each environmental fac-
tor has all other settings related to the network are
fixed; that is, the hyper-parameters are static across
all experiments, and only the environmental vari-
able of interest is manipulated. Along with each of
the presented factors we include suggestions on how
to respond to these in order to best ensure that the
work, as presented, is reproducible.

2.1 Exemplar Task

Answer selection is one important aspect of open-
domain question answering. Given a question, q,
and a set of candidate sentences, A, the answer se-
lection task is to rank the sentences contained in A
such that those candidates that answer the question
are ranked at the top of the list. From this ranked list
and assessments of whether the candidate contains
an answer to the question, common information re-
trieval metrics average precision (AP) and reciprocal
rank (RR) can be calculated to assess the effective-
ness of the system. These metrics are the de facto
metrics to evaluate answer selection, and as such the
metrics are reported within this paper. Descriptions
of these metrics are easily found in the literature.

Worryingly, in the literature, it is becoming in-
creasingly common to not conduct statistical signif-
icance testing, rather a higher metric value is taken
as evidence that the model performs better. Due to

sentence matrix convolution
feature maps !

pooled
representation!

Where! was! the! cat! ?!

The! cat! sat! on! the! mat!

join !
layer! softmax!

additional !
features xfeat

hidden !
layer!

qu
er

y!
do

cu
m

en
t!

xq

xd

Fq

Fd

Figure 1: Exemplar model architecture diagram.

the nature of this paper, we only perform signifi-
cance testing between results in the same condition,
and not across conditions. Within each condition
we identify a “baseline”/default setting to compare
against. Conducting this many significance tests
would normally call for a correction method to be
applied, but we do not do so, as we only wish to in-
dicate that selecting the higher number may result in
an absolute difference, but not necessarily a statisti-
cally significantly one. To calculate significance we
use a paired Wilcoxon signed rank test.

2.2 Exemplar Model

To perform our experiments we utilize the model re-
leased by Sequiera et al. (2017), a simplified Py-
Torch implementation of the model proposed by
Severyn and Moschitti (2015). The model was cho-
sen because of its simplicity, it is quick to train
which supports a fast iteration of experiments, and
it has also been reimplemented with similar effec-
tiveness additional times (Rao et al., 2017). Fig-
ure 1 shows a diagram of the model, which adopts a
“Siamese” structure with two sub-networks to pro-
cess the question and candidate sentence.

We emphasize that this model was only selected
to serve as an exemplar; the effects that are observed
in relative performance will also be present in other
models. Indeed, because of the simplicity of this
model, it is likely that the environmental effects de-
scribed will have a more substantial impact on the
network effectiveness of more complicated models.

2.3 Datasets

The experiments reported in this paper are all per-
formed against the TrecQA dataset that was first
released by Wang et al. (2007) and further elab-

Answers

Split Questions Positive Negative

TrecQA

Train 1,229 6,403 47,014
Development 82 222 926
Test 100 284 1,233

Total 1,411 6,906 49,173

WikiQA

Train 873 1,040 7,632
Development 126 140 990
Test 243 293 2,058

Total 1,242 1,473 10,680

Table 1: Dataset summaries.

orated upon by Yao et al. (2013), as well as the
WikiQA dataset released by Yang et al. (2015). Both
datasets consists of pre-determined training, devel-
opment and test sets. For each question, each candi-
date answer is labelled positive if it contains the an-
swer to the question, otherwise negative. The ratios
of these labels and size of the splits for both datasets
are shown in Table 1.

The TrecQA dataset has further diverged into two
versions, named RAW and CLEAN. The CLEAN ver-
sion has removed those questions that had no pos-
itive labelled answers. Results on these two vari-
ants are not directly comparable to each other (Rao
et al., 2017), and experiments in this paper are per-
formed against the RAW variant. Similar manipula-
tion of the WikiQA dataset has also been performed,
although no analysis of the comparability of the re-
sults has been conducted.

3 Weak Baselines

As observed by Armstrong et al. (2009) in the infor-
mation retrieval field, the use of weak baselines is
a factor that should be considered when discussing
results as using a weak baseline shows a greater im-
provement than could otherwise be claimed. Ta-
ble 2 shows the state-of-the-art results in answer se-
lection, as replicated from the ACL Wiki, Table 3
likewise shows the (potentially incomplete) state-of-
the-art results on the WikiQA dataset, sourced by
inspection of relevant papers. The TrecQA dataset
contains an additional row that presents a simple
baseline—the sum of IDF weights for terms in both

∆

Model AP RR AP RR

RAW DATASET

Punyakanok et al. (2004) 0.419 0.494
Cui et al. (2005) 0.427 0.526 0.008 0.032
Wang et al. (2007) 0.603 0.685 0.176 0.159
Heilman and Smith (2010) 0.609 0.692 0.006 0.007
Wang and Manning (2010) 0.595 0.695 −0.014 0.003
Yao et al. (2013) 0.631 0.748 0.022 0.053
Severyn and Moschitti (2013) 0.678 0.736 0.047 −0.012
Shnarch (2013) 0.686 0.754 0.008 0.006

IDF-Weighted Sum 0.701 0.769

Yih et al. (2013) 0.709 0.770 0.023 0.016
Yu et al. (2014) 0.711 0.785 0.002 0.015
Wang and Nyberg (2015) 0.713 0.792 0.002 0.007
Feng et al. (2015) 0.711 0.800 −0.002 0.008
Severyn and Moschitti (2015) 0.746 0.808 0.033 0.008
Yang et al. (2016) 0.750 0.811 0.004 0.003
He et al. (2015) 0.762 0.830 0.012 0.019
He and Lin (2016) 0.758 0.822 −0.004 −0.008
Rao et al. (2016) 0.780 0.834 0.018 0.004
Chen et al. (2017b) 0.782 0.837 0.002 0.003

CLEAN DATASET

Wang and Ittycheriah (2015) 0.746 0.820
Tan et al. (2015) 0.728 0.832 −0.018 0.012
dos Santos et al. (2016) 0.753 0.851 0.007 0.019
Wang et al. (2016b) 0.771 0.845 0.018 −0.006
He et al. (2015) 0.777 0.836 0.006 −0.015
He and Lin (2016) 0.801 0.877 0.024 0.026
?) 0.802 0.875 0.001 −0.002

Table 2: State-of-the-art (replicated from ACL Wiki
(ACL, 2017)) results on the TrecQA dataset versions, an-
notated with improvement over prior state-of-the-art re-
sults and a simple baseline.

the question and candidate sentence—that performs
no learning of any sort.

Sq,a =
∑
t∈q∩a

log
|D|

|{d ∈ D : t ∈ d}|
(1)

Equation 1 shows the function that produces these
results, where D is the document collection, d is a
document from this collection, q is the query, a is
the candidate sentence, and t is a term. This cal-
culation is done after removal of stopwords.3 This
baseline outperforms a number of the older state-
of-the-art methods. Therefore these older results,
and some results afterwards are comparing against
a weak baseline. In fairness, this baseline was first
reported in the literature by Yih et al. (2013), but is

3The stopword list contains 127 English words, sourced
from the nltk Python Library.

∆

Model AP RR AP RR

Yu et al. (2014) 0.6190 0.6281
Yang et al. (2015) 0.6520 0.6652 0.0330 0.0371
dos Santos et al. (2016) 0.6886 0.6957 0.0366 0.0305
Miao et al. (2016) 0.6886 0.7069 0.0000 0.0112
Yin et al. (2016) 0.6921 0.7108 0.0035 0.0039
Rao et al. (2016) 0.701 0.718 0.0080 0.0072
Wang et al. (2016b) 0.7058 0.7226 0.0048 0.0046
He and Lin (2016) 0.7090 0.7234 0.0032 0.0008
Yin and Schütze (2017) 0.7124 0.7237 0.0034 0.0003
Chen et al. (2017a) 0.7212 0.7312 0.0088 0.0075
Wang et al. (2016a) 0.7341 0.7418 0.0129 0.0106
Wang and Jiang (2016) 0.7433 0.7545 0.0092 0.0127

Table 3: State-of-the-art (gathered by manual inspection)
results on the WikiQA dataset, annotated with improve-
ment over prior state-of-the-art results.

a result that is frequently overlooked in the literature
that followed. However, we also note that the results
for this simple baseline differ between our reported
value and that of Yih et al. (2013), which is sub-
stantially lower—0.6531 AP, 0.7071 RR. For these
reasons we repeat this result here.

4 Confounding Variables

In this section we document a number of confound-
ing variables that often go unreported in the litera-
ture, and can have a substantial effect on whether
a result would be considered state-of-the-art or not,
and the reproducibility of that result. These range
from controllable factors, to factors that are not con-
trollable, but need to be reported. To aid discussion,
the state-of-the-art tables have been recreated and
annotated with the change in AP and RR over the
then state-of-the-art result (Table 2 and Table 3).

Unless otherwise stated, all experiments are per-
formed using Docker containers that are derived
from common, shared, base images. This substan-
tially eases the fixing of all environment and ver-
sioning issues that can be observed when running
under a native environment. All the data that is re-
quired to reproduce the results in this paper is pub-
licly available. Including Docker images, scripts
to create and use those images, and resulting pre-
trained model files.4

4https://github.com/snapbug/
questionable-qa

TrecQA WikiQA

Version AP RR AP RR

cf0e269 0.7495 0.8122 0.6732 0.6953

1f894ba
171fee4 0.7495 0.8122 0.6732 0.6953
715502b 0.7495 0.8122 0.6732 0.6953
d99990b 0.7495 0.8122 0.6732 0.6953
70d7a03* 0.7495 0.8122 0.6732 0.6953
6d9d98f*+ 0.7587 0.8225 0.6858 0.7065

5ef19a9*+ 0.6741‡ 0.7519‡ 0.5374‡ 0.5422‡

196f0aa*+ 0.6742‡ 0.7519‡ 0.5376‡ 0.5424‡

95ea349*+ 0.6713‡ 0.7409† 0.5543‡ 0.5579‡

Table 4: Effect of the version of the model being used on
model results. Only versions that modified the py files
are included. A * indicates that the model at that change-
set does not run under the created Docker environment,
and results are taken from a native host, and a + indicates
that the results from this version are themselves not repro-
ducible, changing between runs. Version 1f894ba does
not complete due to a bug. A ‡ indicates that the result
was statistically significantly different at the p < 0.01
level, and † at the p < 0.05 level, compared to cf0e269.

4.1 Software Versions

There are numerous points of software in which the
version of the software being used can impact the
end results substantially. These are the model def-
initions, they framework software and the libraries
that the framework uses.

4.1.1 Model Definition
We refer to the code that is used to define the model
and to run the experiments as the model definition.
These are changing artifacts, and when the software
is made available to researchers, then it must be
accompanied by the version of that software being
used. A cursory glance of the commit history of
some of these repositories shows a non-zero amount
of bug fixing commits. Because of the nature of deep
learning, these bugs may actually improve effective-
ness, as anecdotal evidence suggests.5

Whether the commits fix bugs or add features, the
models being compared are inherently different and
can result in different outcomes. Authors should
specify which version of the code is being run to ob-
tain the results presented. Table 4 shows the effect

5https://twitter.com/soumithchintala/
status/910339781019791360

https://github.com/snapbug/questionable-qa
https://github.com/snapbug/questionable-qa
https://twitter.com/soumithchintala/status/910339781019791360
https://twitter.com/soumithchintala/status/910339781019791360

TrecQA WikiQA

PyTorch AP RR AP RR

0.2.0 0.7234† 0.7866 0.6773 0.6980

0.1.12 0.7495 0.8122 0.6732 0.6953
0.1.11 0.7495 0.8122 0.6732 0.6953
0.1.10 0.7495 0.8122 0.6732 0.6953
0.1.9 0.7495 0.8122 0.6732 0.6953

Table 5: Effect of the version of PyTorch being used on
model results. Version 0.1.8 and earlier would not run
the sample model due to API changes. A † indicates
that the results are statistically significantly different to
0.1.12 at the p < 0.05 level.

of changing the version of the code on the model’s
effectiveness. As can be seen, there is a reason-
able shift in results, and until authors specify the
exact version of the model that is used for exper-
imentation their results are non-reproducible. The
version used for all further experiments in this paper
is cf0e269.

4.1.2 Framework Version
Specifying the framework that is being used would
be an important first step. Different framework ver-
sions could give different results for the same model
code. To illustrate this we ran the sample model over
a range of different versions of PyTorch.

Table 5 shows the impact of changing the ver-
sion of PyTorch used in the training of the sample
model. It shows that newer (0.2.0) is not neces-
sarily better, although this depends on the dataset.
The version used throughout the rest of the paper
is 0.1.12, as this is the version that was used in
prior work for this model. Version 0.1.8 and ear-
lier would not run the sample model due to use of
features introduced in 0.1.9. The results are stable
for 0.1.x versions across datasets. One possible
cause could be that the underlying libraries PyTorch
relies on were pinned to specific versions across Py-
Torch versions. Alternatively, the model code may
not be using features of PyTorch that were changing
across these versions.

4.1.3 Framework Dependencies
While fixing the framework version is a good step,
these frameworks often themselves rely on other li-
braries. Of particular interest to the neural network

Library/Platform AP RR

TrecQA

Intel MKL on Intel i7-6800K 0.7495 0.8122
Intel MKL on AMD FX-8370E 0.7487 0.8136

OpenBLAS on either 0.7307 0.8029

WikiQA

Intel MKL on Intel i7-6800K 0.6732 0.6953
Intel MKL on AMD FX-8370E 0.6772 0.6981

OpenBLAS on either 0.6773 0.6980

Table 6: Effect of changing math library and architec-
ture on model results, using PyTorch 0.1.12. None of
the results are statistically significantly different to the i7-
6800K.

community is the math library that underpins all the
matrix and vector operations. By default PyTorch
installs a version of the library that is linked against
Intel’s Math Kernel Library (MKL). When running
the sample model on different hardware, we identify
the effectiveness of the model changes.

Table 6 shows the results of running the MKL-
backed version on Intel and AMD hardware, com-
pared to an OpenBLAS, which results in the same
answers regardless of hardware. Intel also notes that
the results of the same floating point calculation may
be different across their own hardware.6 It should
not surprise the reader that Intel’s math library gives
different results on different architectures; after all,
Intel knows with great detail the architecture of Intel
chipsets and is not necessarily inclined to produce
optimal code for competing platforms. The sensi-
tivity of the network to the backing math library is
dependent on the dataset. This difference in effec-
tiveness is likely due to the relative non-convexity of
the optimization surface for the two datasets, where
the TrecQA surface has a large number of local min-
ima.

Changing the library, or even the backend, within
the same library, in which the model is imple-
mented can substantially change the effectiveness of
the model. For example Simon (2017) observed a
16% increase of test accuracy for the same model
(from 0.5438 to 0.6197) by changing the computa-
tion backend from Tensorflow to MXNet.

6http://intel.ly/1b8Qrq6

http://intel.ly/1b8Qrq6

TrecQA WikiQA

Threads AP RR AP RR

1 0.7495 0.8122 0.6732 0.6953
2 0.7485 0.8145 0.6802 0.7022
3 0.7495 0.8122 0.6732 0.6953
4 0.7477 0.8096 0.6771 0.6983
5 0.7495 0.8122 0.6732 0.6953
6 0.7489 0.8162 0.6778 0.6992

Table 7: Effect of number of threads on model results
using MKL-backed PyTorch v0.1.12 on an Intel i7-
6800K processor. None of the results are statistically sig-
nificantly different to a single thread.

4.2 Threads

Threading introduces a number of possibilities for
non-reproducible results, as results from threads can
be returned in differing orders. This is because
floating point arithmetic is non-associative as well
as non-commutative; however, these effects can be
controlled by using the appropriate functions and
settings in the library. Training the sample model
repeatedly achieves the same results, suggesting that
these settings are being utilized inside the PyTorch
library, although we implore readers to discover this
for their library of choice.

However, while threading itself does not impact
the results within PyTorch, the number of threads
used does. Other than by never varying the number
of threads used, this effect cannot be controlled for.
The reason for this is related to the non-associativity
of floating point maths. For example, given the
mathematical relations a + b = e, and c + d = f ,
the floating point specification does not ensure that
the mathematical equality a + b + c + d = e + f
holds. A result calculated on two threads may per-
form the e+ f calculation, while on four threads the
a+b+c+d calculation may be performed, resulting
in potential differences.

For these experiments we use PyTorch v0.1.12
with Intel’s MKL library on an Intel i7-6800K
processor. Using the OMP_NUM_THREADS and
MKL_NUM_THREADS environment variables, as
well as the set_num_threads function in Py-
Torch, we can control the number of threads used
in training. We range this from 1–6 on our machine,
as this is the number of hardware cores on the CPU,
and therefore the maximum number of threads that

OpenMP will spawn. Table 7 shows the results of
this experiment. Interestingly the results are con-
sistent within datasets when using an odd number
of threads, although this is most likely coincidental.
The range of differences is small, but is, again, larger
than some of the incremental improvements reported
in the literature. The exact environment variables, or
code settings, that need to be modified will depend
on the framework being used.

There is no solution to this given the non-
associative nature of the floating-point and the
splitting of workload among differing numbers of
threads. The only recommendation is that authors
report the number of threads used for training, al-
though we do suggest a smaller number to err on
the side of caution, as OpenMP will not create more
threads than there are hardware cores.

4.3 GPU Computation

The variation of GPUs available for deep learn-
ing research is arguably larger than that of CPUs.
There are many models, and each manufacturer is
free to deviate from the reference models provided
by nVidia or AMD, although it is unclear just how
many choose to do so. There are also more uncon-
trollable factors, for instance, the number of threads
that are used by the GPU is uncontrollable meaning
that results are unlikely to be the same across differ-
ent GPUs, unlike CPU training.

Table 8 shows the results of enabling GPU com-
putation on the sample model. We report on both en-
abling the cuDNN backend, as this is the default, as
well as disabling it globally. The cuDNN backend is
known to contain some non-deterministic kernels.7

In addition, nVidia provides a white-paper that de-
scribes some of the implementation details and com-
pliance issues of the IEEE 754 floating point spec-
ification and their impact on nVidia GPUs (White-
head and Fit-Florea, 2011). The paper also presents
examples where compiling for a 32-bit x86 archi-
tecture and a 64-bit x86-64 architecture can yield
different results.

In addition to running the experiment on our own
GPU, an Asus branded nVidia GeForce 1080GTX
(revision a1) we also repeated the experiment on

7http://docs.nvidia.com/deeplearning/sdk/
cudnn-developer-guide/#reproducibility

http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/#reproducibility
http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/#reproducibility

TrecQA WikiQA

Computation Hardware AP RR AP RR

CPU

Intel i7-6800K 0.7495 0.8122 0.6732 0.6953

GPU

GeForce 1080GTX cuDNN 0.7277 0.7788 0.6604 0.6804
GeForce 1080GTX 0.7474 0.8044 0.6873 0.7054
Tesla K80 cuDNN 0.7527 0.8115 0.6852 0.7046
Tesla K80 0.7527 0.8115 0.6852 0.7046

Table 8: Effect of the computation hardware on model results. None of the results are statistically significantly different
when compared to the Intel i7-6800K.

an Amazon EC2 p2.xlarge instance. This instance
comes equipped with a single nVidia Tesla K80
GPU. Other instances come equipped with multiple
GPUs, but as the model is both small and does not
take advantage of multiple GPUs experiments were
not performed on these instances. Of note is the
presence or absence of the cuDNN library has no
effect on the K80, but does on the 1080GTX GPU.
We suspect that the reason for this is that the K80 is
designed as a compute card, while the 1080GTX is
primarily designed for graphics processing. This de-
sign difference could manifest itself in different in-
structions that can be taken advantage of by cuDNN
kernels.

Even with just two GPUs and using the cuDNN
backend, there is already evidence that the perfor-
mance of the network depends on both the dataset
and the underlying hardware. There is a clear de-
pendence on the dataset for the relative performance.
Further results reported on the GPU are reported on
the GeForce 1080GTX with cuDNN disabled. Al-
though this is not the default it maximizes repro-
ducibility by avoiding non-reproducible kernels.

4.4 Random Seed

Perhaps the most obvious feature of machine learn-
ing that can impact the effectiveness is the random
seed. Thus far the experiments in this paper have
used a fixed seed, and like most prior research this
was only implied rather than explicitly stated. The
seed in question was 1234.

Randomness is a crucial part of machine learn-
ing and values from the random generator are widely
used. For example, random values are used for the

initial values of weights, for selecting which nodes
to drop in drop-out layers, and for selecting set
embeddings for terms that have no associated em-
beddings. As Goldberg (2017, Section 5.3.2 p59)
rightly makes note of—“When debugging, and for
reproducibility of results [emphasis added], it is ad-
vised to used a fixed random seed.” Figure 2 shows
the variance in AP and RR when specifying differ-
ent seeds, for 200 randomly chosen seeds (selected
using the bash (version 4.3.48(1)) RANDOM built-in,
itself initialized/seeded to 1234 prior to performing
runs).

Noting the generator of the random numbers is
important, as different languages and libraries may
use different generators. Most languages default
to a pseudo-random generator for performance rea-
sons, which carries the additional benefit that se-
quences can be reconstructed from a given start
state, commonly referred to as a seed. For exam-
ple, the bash version used to generate the seeds for
Figure 2 uses a linear congruential generator (Park
and Miller, 1988). A more commonly used gen-
erator is MT19937, a Mersenne Twister based on
the Mersenne prime 219937 − 1, the standard im-
plementation that uses a 32-bit word length. An-
other implementation, MT19937-64, uses a 64-bit
word length and generates a different sequence. To
specify the generator used it is often enough to spec-
ify the language version and platform being used.
PyTorch and dependent libraries use the aforemen-
tioned MT19937 generator.

The spread of results shows that the results are ei-
ther marginally worse than prior work (which would
likely mean the result from this model would not be

CPU WikiQA GPU WikiQA

CPU TrecQA GPU TrecQA

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.62 0.64 0.66 0.68 0.70 0.72 0.74

0.72 0.74 0.76 0.78 0.72 0.74 0.76 0.78

0.78

0.80

0.82

0.84

0.64
0.66
0.68
0.70
0.72
0.74
0.76

0.78

0.80

0.82

0.84

0.64
0.66
0.68
0.70
0.72
0.74
0.76

AP

R
R

Seeds State-of-the-art S&M

Figure 2: Variance in AP and RR due to the random seed specified when training on both the CPU & GPU. Version
cf0e269 of the model was used, with version 0.1.12 of PyTorch, and the Intel MKL math library. CPU train-
ing was performed on an Intel i7-6800K processor using one thread, and GPU training on an Asus branded nVidia
1080GTX (revision a1) with CUDA version 8.0.61. The 200 seeds were selected by the bash (version 4.3.48(1))
RANDOM builtin, itself initialized to 1234. The seeds selected were identical for all training conditions. The colours
and shapes represent whether the model is the sample model (blue circles), the S&M model that is being reimple-
mented (red square), or another state-of-the-art result (yellow triangles). The TrecQA dataset is shown on the top, and
the WikiQA dataset on the bottom.

published), or better than work that was reported on
afterward (meaning these latter results may not have
been published). Significance testing across these
models was not performed.

Table 9 shows the agreements, calculated using
Kendall’s τ and Spearman’s ρ, on rankings for each
of the datasets, comparing the two metrics, and two
computational backends used, all results shown are
statistically significant at the p < 0.01 level.

On the TrecQA dataset, these variations in AP
and RR show only moderate agreement in rankings
of the model when the same training computational
backend is used, and only weak agreement across
computation backend. For the TrecQA dataset, the
CPU results covered a range of 0.0393 for AP, and
0.0599 for RR, while the GPU covered 0.0379 AP,
and 0.0492 RR respectively.

The WikiQA dataset exhibits stronger agreements
about model rankings on the same computation

backend, but similarly weak agreements when com-
paring across computational backends. The range of
AP and RR values on this dataset are even larger,
covering 0.0712 AP, and 0.0727 RR on GPU; and
0.0705 AP and 0.0755 RR on the CPU.

These ranges in AP and RR values are greater
than a large proportion of incremental improvements
reported in prior answer selection research (see Ta-
ble 2 and Table 3), and indeed are an order of mag-
nitude larger than a typically reported improvement
in either metric on the WikiQA datasets. In these
cases the model was trained to target AP, another
setting that is not commonly reported. While some
software for models made available specifies a seed,
this detail is often omitted from the paper, making
replication-from-paper efforts nigh on impossible.

Reagen et al. (2017, Chapter 4) discuss this vari-
ance in results from seeding, calling it Iso-Training
Noise. They use this concept to frame discus-

TrecQA

KENDALL’S τ RRCPU APGPU RRGPU

APCPU 0.5514 0.2871 0.2069
RRCPU 0.2148 0.2894
APGPU 0.5315

SPEARMAN’S ρ

APCPU 0.7409 0.4125 0.3304
RRCPU 0.3126 0.4205
APGPU 0.7171

WikiQA

KENDALL’S τ RRCPU APGPU RRGPU

APCPU 0.8842 0.3238 0.3358
RRCPU 0.3096 0.3330
APGPU 0.9068

SPEARMAN’S ρ

APCPU 0.9783 0.4622 0.4762
RRCPU 0.4392 0.4690
APGPU 0.9868

Table 9: Kendall’s τ and Spearman’s ρ based on the rank-
ings of model effectiveness on different seeds across met-
rics and training computation backend. All values are sta-
tistically significant at the p < 0.01 level.

sion over whether optimizations, such as using fixed
point arithmetic over floating point, are safe to per-
form. They define an optimization as safe if the re-
sults are within one standard deviation of the mean
of the results observed from multiple seeded runs.

We suggest that specifying the random seed used
in training is the bare minimum, necessary step that
should be taken, although given the potential for dif-
ferent pseudo-random generators, and differences in
implementation, this may not be enough. Indeed,
the best approach is to stop reporting single-value
results, and instead report the distribution of results
from a range of seeds. Doing so allows for a fairer
comparison across models, by discarding potential
comparisons of lucky and unlucky seeds. In ad-
dition, these result populations can be statistically
compared for significance, allowing for stronger
claims on improvement.

4.5 Interactions

Thus far this paper has presented a number of effects
that can affect the results of a neural network. Each
of these has been presented in isolation, after fixing

the prior effects. These effects clearly have potential
for interaction and the interaction is unpredictable.
In this section we briefly examine one of these in-
teractions, namely the seed selection combined with
either CPU or GPU training.

The results presented in Table 8 show that for a
given seed the models exhibit different effectiveness
based on the hardware used for training. In Sec-
tion 4.4 it was shown that the seed has a significant
impact on the relative effectiveness of the model re-
gardless of this computational backend. The cor-
relation coefficients across devices presented in Ta-
ble 9 leads us to suspect that there can be substantial
changes in effectiveness when switching the back-
end from CPU to GPU and vice versa.

Figure 3 shows the effect of changing from CPU
training to GPU training, using the same 200 seeds
that were used in Section 4.4. The relationship
observed in Figure 2 between AP and RR is still
present, but there is no telling, given a fixed seed,
whether training on GPU or CPU would result in
better effectiveness. In addition, these deltas can be
larger than a substantial number of incremental im-
provements reported. For example, a middling re-
sult on the CPU may be transformed to either a top
or bottom result if switching to GPU training, with
everything else fixed.

By reporting results as single numbers the varia-
tion due to the hardware on which the training is per-
formed is hidden, and this could lead authors to con-
clude that their model is a substantial improvement
on state-of-the-art. The changes in AP and RR that
are observed are representative of even the larger
improvements in state-of-the-art. However, when
comparing the distributions of the scores across the
backends by visual inspection of Figure 2 there is
clearly not any difference in the populations. Sta-
tistical significance testing (p ≫ 0.05 in a paired
t-test, both two- and single-tailed) bears out this in-
tuition. Using these population based results would
then lead authors to a different conclusion than if the
seed was “lucky” for the training hardware. This is a
concrete example of the differences between report-
ing result distributions compared with single values.

4.6 Reporting Rounding
The final aspect of result reporting that is control-
lable for is the rounding of results. For example,

TrecQA WikiQA

-0.02 -0.01 0.00 0.01 0.02 -0.050 -0.025 0.000 0.025 0.050

-0.03

0.00

0.03

-0.02

0.00

0.02

∆AP

∆
R

R

Figure 3: Change in AP and RR when switching to training the model on GPU from to CPU. Each dot represents a
training run with the same seed provided to each of the training processes. The TrecQA dataset is shown on the left,
and WikiQA on the right.

when using the default install options of the sample
model, and fixing the other versions and settings,
our sample model gives two observed separate re-
sults with CPU training—on the TrecQA dataset ei-
ther an AP of 0.7485 or 0.7487 is obtained. While
this difference of 0.0002 is small, there is a newer
trend (present in the latter three papers in Table 2) of
reporting results to three decimal points. In this case
even such a minor difference can result in state-of-
the-art or not, statistical significance notwithstand-
ing. For example a result of 0.7484 would round
down, while 0.7486 would round up, overemphasiz-
ing the difference by a factor of 5. We concede, how-
ever, that the same argument can be applied regard-
less of which decimal point cut-off is used, although
we observe that trec_eval, the de facto tool used
to calculate AP and RR, reports to four.

We recommend that reviewers be skeptical of
such minor improvements on state-of-the-art when
single results are reported, the recommendation here
follows that of Section 4.4, in that ideally multiple
seeds are used, and testing is performed on the pop-
ulation of results to determine improvement.

5 Conclusions

In this paper we have demonstrated a number of fac-
tors that are present during training of a model and
affect the results of said model. These parameters,
and their settings, often go unreported in the litera-
ture. The result is that a large amount of prior work
in answer selection is inherently irreproducible. Fur-
thermore, the differences in results illustrated by
these effects can be much larger than the majority

of improvements reported as gains in the literature.
The effects that we presented are not stand-alone

effects. Interaction between effects also has an ad-
ditional impact, one of which was discussed in Sec-
tion 4.5. Other results presented in this paper do not
consider this interaction. For example Table 6 sug-
gested that a model trained using OpenBLAS pro-
duces worse results for the TrecQA dataset than one
trained using Intel’s MKL library, which is true. . .
for that version of the model code, for that version of
the framework, for that random seed, when trained
on a single thread on that CPU, for that dataset. We
reserve investigating the interaction effects of these
individual effects for future work.

It is simply no longer adequate to report a single
value when evaluating results from neural networks,
especially without the presence of statistical testing
on those results. By far the largest source of vari-
ability in the experiments presented in this paper was
when the network was seeded with different random
starting points. The range of results produced cover
ranges of results that can be an order of magnitude
larger than typically imported improvements.

As well as repeating experiments for multiple
seeds, the specifications of the hardware on which
the experiments were performed should be reported
alongside the results, as changing the hardware can
change the results by an order of magnitude. Addi-
tionally, the number of threads and the math library
used impact on the results and should be reported.

Finally, beyond the hardware effects, the software
that is used to both run the model, and define the
model, has an impact. For this reason both the model

definition and library versions, as well as all the re-
quired dependencies, should be pinned to a specified
version. These issues are easily avoidable by the use
of common packaging tools such as Docker, which
also provides opportunities to fix most of the non-
versioning environmental issues as well.

In cases where authors are unable to provide
a Docker image, or equivalent, then making the
trained models available is one alternative. Load-
ing pre-trained models is an action that is supported
by a number of frameworks. PyTorch, for example,
provides functions to load a model from a URL. The
pre-trained models appear to provide consistent re-
sults even when the inference pass is performed us-
ing settings that would have provided different re-
sults in training.

A sentence is all that it takes to describe the envi-
ronment used for training. For example: “our model
was written against PyTorch v0.1.12, and training
was conducted on an Intel i7-6800K using a single
thread and Intel’s Math Kernel Library”. Beyond
this we implore reviewers to be wary of such minor
reported improvements in the light of these issues.

Acknowledgements

The author wishes to acknowledge the input and
advice of (in alphabetical order) Gaurav Baruah,
Jimmy Lin, Adam Roegiest, Royal Sequiera, and
Michael Tu. Finally thanks to the reviewers and ed-
itors for their comments and suggestions to improve
the paper.

References

ACL. 2017. Question Answering (State of the art).
https://aclweb.org/w/index.php?title=
Question_Answering_(State_of_the_art).
Accessed: Sept. 7 2017.

Jaime Arguello, Matt Crane, Fernando Diaz, Jimmy Lin,
and Andrew Trotman. 2016. Report on the SIGIR
2015 workshop on reproducibility, inexplicability, and
generalizability of results (RIGOR). 49(2):107–116.

Timothy G. Armstrong, Alistair Moffat, William Web-
ber, and Justin Zobel. 2009. Improvements that don’t
add up: Ad-hoc retrieval results since 1998. In SIGIR,
pages 601–610.

Monya Baker. 2016. 1,500 scientists lift the lid on repro-
ducibility. Nature, 533(7604):452–454.

Qin Chen, Qinmin Hu, Jimmy Xiangji Huang, Liang He,
and Weijie An. 2017a. Enhancing recurrent neu-
ral networks with positional attention for question an-
swering. In SIGIR, pages 993–996.

Ruey-Cheng Chen, Evi Yulianti, Mark Sanderson, and
W. Bruce Croft. 2017b. On the benefit of incorporat-
ing external features in a neural architecture for answer
sentence selection. In SIGIR, pages 1017–1020.

Christian Collberg, Todd Proebsting, and Alex M. War-
ren. 2015. Repeatability and benefaction in computer
systems research. University of Arizona TR 14.

Hang Cui, Renxu Sun, Keya Li, Min-Yan Kan, and Tat-
Seng Chua. 2005. Question answering passage re-
trieval using dependency relations. In SIGIR, pages
400–407.

Cícero Nogueira dos Santos, Ming Tan, Bing Xiang, and
Bowen Zhou. 2016. Attentive pooling networks.
arXiv, abs/1602.03609v1.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep learn-
ing to answer selection: A study and an open task. In
ASRU, pages 813–820.

Yoav Goldberg. 2017. Neural Network Methods for
Natural Language Processing. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool
Publishers.

Hua He and Jimmy Lin. 2016. Pairwise word interaction
modeling with deep neural networks for semantic sim-
ilarity measurement. In HLT-NAACL, pages 937–948.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with convo-
lutional neural networks. In EMNLP, pages 1576–
1586.

Michael Heilman and Noah A. Smith. 2010. Tree
edit models for recognizing textual entailments, para-
phrases, and answers to questions. In HLT-NAACL,
pages 1011–1019.

Peter Henderson, Riashat Islam, Phillip Bachman, Joelle
Pineau, Doina Precup, and David Meger. 2017.
Deep Reinforcement Learning that Matters. arXiv,
abs/1709.06560v1.

Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan,
Ishan Chattopadhyaya, John Foley, Grant Ingersoll,
Craig Macdonald, and Sebastiano Vigna. 2016. To-
ward reproducible baselines: The open-source IR re-
producibility challenge. In ECIR, pages 408–420.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neu-
ral variational inference for text processing. In ICML,
pages 1727–1736.

Gina Moraila, Akash Shankaran, Zuoming Shi, and
Alex M. Warren. 2014. Measuring reproducibility in
computer systems research. Technical report, Univer-
sity of Arizona.

https://aclweb.org/w/index.php?title=Question_Answering_(State_of_the_art)
https://aclweb.org/w/index.php?title=Question_Answering_(State_of_the_art)

Joakim Nivre. 2017. Challenges for ACL:
ACL Presidential Address 2017. https:
//www.slideshare.net/aclanthology/
joakim-nivre-2017-presidential-
address-acl-2017-challenges-for-
acl/. Accessed: 20 Sept. 2017.

Stephen K. Park and Keith W. Miller. 1988. Random
number generators: good ones are hard to find. Com-
munications of the ACM, 31(10):1192–1201.

Thomas Pfeiffer and Robert Hoffmann. 2009. Large-
scale assessment of the effect of popularity on the re-
liability of research. PLOS One, 4(6):e5996.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2004.
Mapping dependencies trees: An application to ques-
tion answering. In Proceedings of AI&Math 2004,
pages 1–10.

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with deep
neural networks. In CIKM, pages 1913–1916.

Jinfeng Rao, Hua He, and Jimmy Lin. 2017. Experi-
ments with convolutional neural network models for
answer selection. In SIGIR, pages 1217–1220.

Brandon Reagen, Robert Adolf, Paul N. Whatmough,
Gu-Yeon Wei, and David M. Brooks. 2017. Deep
Learning for Computer Architects. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Pub-
lishers.

Nils Reimers and Iryna Gurevych. 2017. Optimal hy-
perparameters for deep LSTM-networks for sequence
labeling tasks. arXiv, abs/1707.06799v1.

Royal Sequiera, Gaurav Baruah, Zhucheng Tu, Salman
Mohammed, Jinfeng Rao, Haotian Zhang, and Jimmy
Lin. 2017. Exploring the effectiveness of convolu-
tional neural networks for answer selection in end-to-
end question answering. arXiv, abs/1707.07804v1.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In EMNLP, volume 13, pages 458–467.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In SIGIR, pages 373–382.

Eyal Shnarch. 2013. Probabilistic Models for Lexical
Inference. Bar Ilan University.

Julien Simon. 2017. Keras shoot-out: TensorFlow vs
MXNet. https://medium.com/@julsimon/
keras-shoot-out-tensorflow-vs-
mxnet-51ae2b30a9c0. Accessed: 5 Sept.
2017.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. LSTM-
based deep learning models for non-factoid answer se-
lection. arXiv, abs/1511.04108v4.

Zhiguo Wang and Abraham Ittycheriah. 2015. FAQ-
based question answering via word alignment. arXiv,
abs/1507.02628v1.

Shuohang Wang and Jing Jiang. 2016. A compare-
aggregate model for matching text sequences. arXiv,
abs/1611.01747v1.

Mengqiu Wang and Christopher D. Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In COLING, pages 1164–1172.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. In ACL, pages 707–712.

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura.
2007. What is the jeopardy model? A quasi-
synchronous grammar for QA. In EMNLP-CoNLL,
volume 7, pages 22–32.

Bingning Wang, Kang Liu, and Jun Zhao. 2016a. Inner
attention based recurrent neural networks for answer
selection. In ACL, pages 1288–1297.

Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah.
2016b. Sentence similarity learning by lexical decom-
position and composition. In COLING, pages 1340–
1349.

Nathan Whitehead and Alex Fit-Florea. 2011. Precision
& performance: Floating point and IEEE 754 compli-
ance for nVidia GPUs. Accessed: Sept. 7 2017, from
https://developer.nvidia.com/sites/
default/files/akamai/cuda/files/
NVIDIA-CUDA-Floating-Point.pdf.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In EMNLP, pages 2013–2018.

Liu Yang, Qingyao Ai, Jiafeng Guo, and W. Bruce
Croft. 2016. aNMM: Ranking short answer texts with
attention-based neural matching model. In CIKM,
pages 287–296.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013. Answer extraction
as sequence tagging with tree edit distance. In HLT-
NAACL, pages 858–867.

Scott Wen-tau Yih, Ming-Wei Chang, Chris Meek, and
Andrzej Pastusiak. 2013. Question answering us-
ing enhanced lexical semantic models. In ACL, pages
1744–1753.

Wenpeng Yin and Hinrich Schütze. 2017. Task-specific
attentive pooling of phrase alignments contributes to
sentence matching. In EACL, pages 699–709.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen
Zhou. 2016. ABCNN: Attention-based convolutional
neural network for modeling sentence pairs. TACL,
4(1):259–272.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer sen-
tence selection. arXiv, abs/1412.1632v1.

https://www.slideshare.net/aclanthology/joakim-nivre-2017-presidential-address-acl-2017-challenges-for-acl/
https://www.slideshare.net/aclanthology/joakim-nivre-2017-presidential-address-acl-2017-challenges-for-acl/
https://www.slideshare.net/aclanthology/joakim-nivre-2017-presidential-address-acl-2017-challenges-for-acl/
https://www.slideshare.net/aclanthology/joakim-nivre-2017-presidential-address-acl-2017-challenges-for-acl/
https://www.slideshare.net/aclanthology/joakim-nivre-2017-presidential-address-acl-2017-challenges-for-acl/
https://medium.com/@julsimon/keras-shoot-out-tensorflow-vs-mxnet-51ae2b30a9c0
https://medium.com/@julsimon/keras-shoot-out-tensorflow-vs-mxnet-51ae2b30a9c0
https://medium.com/@julsimon/keras-shoot-out-tensorflow-vs-mxnet-51ae2b30a9c0
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

	Introduction
	Experimental Setup
	Exemplar Task
	Exemplar Model
	Datasets

	Weak Baselines
	Confounding Variables
	Software Versions
	Model Definition
	Framework Version
	Framework Dependencies

	Threads
	GPU Computation
	Random Seed
	Interactions
	Reporting Rounding

	Conclusions

